On Clifford′s Ramification Index for Abelian Chief Factors of Finite Groups
نویسندگان
چکیده
منابع مشابه
On non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملOn $m^{th}$-autocommutator subgroup of finite abelian groups
Let $G$ be a group and $Aut(G)$ be the group of automorphisms of $G$. For any natural number $m$, the $m^{th}$-autocommutator subgroup of $G$ is defined as: $$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G,alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$ In this paper, we obtain the $m^{th}$-autocommutator subgroup of all finite abelian groups.
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملon finite a-perfect abelian groups
let $g$ be a group and $a=aut(g)$ be the group of automorphisms of $g$. then the element $[g,alpha]=g^{-1}alpha(g)$ is an autocommutator of $gin g$ and $alphain a$. also, the autocommutator subgroup of g is defined to be $k(g)=langle[g,alpha]|gin g, alphain arangle$, which is a characteristic subgroup of $g$ containing the derived subgroup $g'$ of $g$. a group is defined...
متن کاملsubgroup intersection graph of finite abelian groups
let $g$ be a finite group with the identity $e$. the subgroup intersection graph $gamma_{si}(g)$ of $g$ is the graph with vertex set $v(gamma_{si}(g)) = g-e$ and two distinct vertices $x$ and $y$ are adjacent in $gamma_{si}(g)$ if and only if $|leftlangle xrightrangle capleftlangle yrightrangle|>1$, where $leftlangle xrightrangle $ is the cyclic subgroup of $g$ generated by $xin g$. in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1995
ISSN: 0021-8693
DOI: 10.1006/jabr.1995.1326